Load-holding valves type LHDV
with special oscillation dampening

1. General

These valves are pressure valves according to the Industrial Standard ISO 1219-1. They prevent pulling or pushing loads from accelerating uncontrollably during movements in load direction, or from proceeding with higher speed than intended i.e. determined by the inflowing oil on the pump’s side. Consequently, these devices prevent a collapse or eventual rupture of the oil column. The main application for load-holding valves is with hydraulic lifting-, pivoting-, turning- or similar constructions which utilize double acting consumers (hydraulic cylinders, hydraulic motors).

This is accomplished by throttling of the return flow from the corresponding consumer. The load-holding valves generates a flow resistance, which is always a little bit higher than the pressure created from the load. This back pressure is only generated under negative load conditions. But the valve will be fully opened, enabling free flow (return) if the load is positive, i.e. the load acts against the direction of the motion.

The throttle device is self-adjusting and therefore adapts continuously to any alternation of the load condition. This is achieved by an equilibrium of forces between the outflow and inflow (from the actuated consumer) acting on the functional valve elements on the one side, and the valve spring acting on the other side.

The valves version LHDV are especially designed for those applications, which, due to their own elasticity, tend heavily towards pendulum oscillations. The load-holding valves are most advantageous when utilized in conjunction with prop. directional spool valve banks, functioning according to the Load-Sensing-Principle which do have 2-way inflow control valves in each valve bank section. Consequently, they should be installed in the corresponding lines between consumer and directional spool valve.

As a self-contained unit, the LHDV-valve permits the specific intervention into the oscillating circle, as it is created by hydraulic cylinders with attached load, the flow control valves of the directional spool valves, or the pressure/flow regulator of variable displacement pump. Its dampening abilities are significantly more adaptable and their effect more accurately adjustable than would be possible with common measurements, e.g. through modification (distortion) of the characteristic curve of the flow control valves installed in prop. directional spool valves.

The fluctuating load pressure influences the motion of the control device which varies the throttle area. But its response is slightly delayed, slowed and weakened by a combination of especially designed damping elements. This will successfully intercept the pendulum motions being evoked, which are induced by starting, stopping, or sudden transitions from full speed to crawl speed. They will be eventually suppressed in their developing stage, by letting them fade away quickly. For a detailed functional description and notes for customizing the damping, especially for critical conditions, see B 7770.

Pivoting

Lifting

Bending

Extending

Proportional directional spool valve bank (size 3)
Type PSV acc. to D 7700-3

Variable displacement axial piston pump
Type V30D acc. to D 7960

Operating pressure $p_{\text{max}} = 420$ bar; Flow $Q_{\text{max}} = 80$ lpm

© 1993 by HAWE Hydraulik

HAWE HYDRAULIK SE
STREITFELDSTR. 25 • 81673 MÜNCHEN

D 7770
Load-holding valves LHDV

August 2002-02
2. Available versions, main data

Order examples:
LHDV 33 P - 15 - B 6 - 300/320
Desired pressure setting (bar) within the permissible pressure range, acc. to sect. 3
For correct positioning of pressure figures for the load holding valve, and eventual shock valve see following examples.

Table 3: Orifice combinations (orifice D1 - without coding = 0.5 mm)

<table>
<thead>
<tr>
<th>Coding</th>
<th>Orifice 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>Release ratio</td>
<td>1: 6.3</td>
</tr>
</tbody>
</table>

1) The actual release ratio corresponds to the geometric ratio

Order examples:
LHDV 33 P -11 - C6 - 280
Basic type, currently only available for manifold mounting (consumer side). For an adapter plate, enabling pipe connection on the consumer side, see sect. 4, page 5.

LHDV 33 P -15 - B6 - 300/320
Version with shock valve, currently only available for manifold mounting (consumer side). For an adapter plate, enabling pipe connection on the consumer side, see sect. 4, page 5.

LHDV 33 H -15 - A6 - 200/240
Version with shock valve, mounted by banjo bolt H = M 22x1.5 or H 1/2 - G 1/2 A (consumer side). It may be installed in any angle concentric around the V-port.
A centering pedestal is required at the mounting area, see dimensional drawings sect. 4.
Double valve for alternating load directions

The release of the respective reflow side V1 → F1 or V2 → F2 takes place via internal control oil ducts. No external control pipes are required.

Order examples of available versions:

LHDV 33 - 21 - A6 - 240/180

Basic version for all applications, where no high pressure peaks or sudden user stops (shock pressure) are expected.

LHDV 33 - 21L - A6 - 240/180

Like the above basic version, but with additional port for leakage oil (see also notes in sect. 5.2).

LHDV 33 - 21W(WD) - A6 - 240/180

Like the above basic version, but with additional shuttle valve (see also description of type LHDV 33 - 25W(WD)).

Flow and orifice combination coding, see table 2 and 3 as well as functional description in B 7770.

LHDV 33 - 25 - D5 - 220/220 - 260/260

Basic version with shock valves e.g. for consumers with a piston area ratio of 1:1.

Flow pattern symbol for version LHDV 21-25L with additional oil leakage port, similar to LHDV 33 - 21L.

LHDV 33 - 25W - A6 - 250/250 - 300/300

Like the basic version 25, but with additional shuttle valve, e.g. for brakes with hydraulic release (port X). Preferably used for hydraulic motors.

Flow pattern symbol for version LHDV 33-25WL with additional leakage port, similar to LHDV 33 - 21L.

LHDV 33 - 25WD - C6 - 100/140 - 130/180

Like version 25 W, but with additional by-pass check valve type BC1-40 E acc. to D 6969 B mounted at port X (intended to prevent sudden kicking-in of the brake).

Flow pattern symbol for version LHDV 33-25 WDL with additional leakage port, similar to LHDV 33 - 21L.

LHDV 33 - 25WDN - B6 - 200/200 - 240/240

Like version 25 WD, but with additional suction valve No. 7770 040 intended for hydraulic motors to balance volumes, altered by leakage. Symbol for version LHDV 33 -25 WDLN with additional leakage port, similar to LHDV 33 - 21L.
3. Further characteristic data

Designation
Load holding valve (over center valve), with hydraulic release and by-pass check valve

Valve design
Load holding valve: cone seated piston valve
by-pass check valve: disk seated valve

Installed position
Amy

Ports
F, F1, F2, V, V1, V2 and R
M, S, Z

Mass (weight) approx.
Type LHDV 33 P-11 = 1.3 kg
LHDV 33 P-15 = 1.8 kg 1)
LHDV 33 H-11 = 1.7 kg
LHDV 33 H-15 = 2.2 kg
LHDV 33-21(21W) = 3.5 kg
LHDV 33-21L (21WL) = 3.5 kg
LHDV 33-21WD = 3.6 kg
LHDV 33-25WD = 4.0 kg
LHDV 33-25WDN = 4.7 kg
LHDV 33-25WDNL = 4.8 kg
LHDV 33 P-15 = 1.8 kg
LHDV 33-21L (21WL) = 3.5 kg
LHDV 33-21WD = 3.6 kg
LHDV 33-25WD = 4.0 kg
LHDV 33-25WDN = 4.7 kg
LHDV 33-25WDNL = 4.8 kg
LHDV 33 H-11 = 1.7 kg
LHDV 33 H-15 = 2.2 kg
LHDV 33-25 (L, W, WL) = 3.9 kg

1) Corresponding connection block No. 7770 024 = 0.4 kg

Flow direction
Working direction (load holding function) V → F, V1 → F1 or V2 → F2
free flow F → V, F1 → V1, F2 → V2

Release ratio
approx. 1:8.2 with closed valve (geometrical ratio)
approx. 1:1.2 to 1:6.4 with open (unlocked) valve, depending on the orifice diameter ratio,
see sect. 2, table 3

Pressure adjustment
A pressure gauge should be used whenever the pressure setting is adjusted or altered! The given figures for pressure alternation per rotation or per mm adjustment travel of the perforated disc within the connector F (F1 and F2) are only a rough guide line for approximately achieving the desired setting (start of operation). The setting should be at least 10% above the max. expected load pressure.

Alternation of pressure approx.: per turn per mm approx.

<table>
<thead>
<tr>
<th>Load holding valve</th>
<th>pressure range</th>
<th>per turn</th>
<th>pressure range</th>
<th>per mm approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ... 250 bar</td>
<td>45 bar</td>
<td>50 bar</td>
<td>25 bar</td>
<td></td>
</tr>
<tr>
<td>220 ... 350 bar</td>
<td>50 bar</td>
<td>27.5 bar</td>
<td>25 bar</td>
<td></td>
</tr>
<tr>
<td>280 ... 420 bar</td>
<td>62 bar</td>
<td>34 bar</td>
<td>25 bar</td>
<td></td>
</tr>
</tbody>
</table>

Shock valve
pressure range 50 ... 250 bar
106 bar 80 bar

Test rig with manual pump
Pressure gauge

This bypass-throttle valve is necessary with test rigs using a motor pump! The pump should be circulating via open throttle valve, then close the throttle valve slowly until LHDV starts barely responding (avoid larger flow since the valve might squeal).

Pressure fluid
Hydraulic oil according to DIN 51 524, table 1 to 3; ISO VG 10 to 68 according to DIN 51 519
range of viscosity: min. approx. 4; max. approx. 1500 mm²/sec; optimum range: approx. 10...500 mm²/sec
Also usable for biodegradable pressure fluids of the type HEPG (Polyacylglycerol) and HEES (synthetic ester) at operating temperatures < +70°C

Temperatures
Ambient: approx. -40... +80°C
Fluid: -25... +80°C, but pay attention to viscosity
Starting temperature down to -40°C admissible (watch starting viscosity!), when the operating temperature during following operation is at least 20 K higher.
Biological degradable pressure fluids: Observe manufacturer’s specifications. Considering the compatibility with seal material not over < +70°C.

Δp-Q-curves
The curves (reference values) for V → F are valid for the fully opened (released) valve

Functional restrictions
The double valves, flow pattern symbol 21... and 25..., cannot be utilized with directional valves, which show the flow characteristics of a differential circuit in one position, e.g. coding C in pamphlet D 5700. Single valves, flow pattern symbols 11 or 15, must not be connected to the rod side of hydraulic cylinders.
4. Dimensions

All dimensions in mm and subject to change without further notice!

For the accessibility of the adjustable damping devices, see functional description B 7770.

Type LHDV 33 P-11

For instructions to the adjustment of the throttling screw, see note in sect. 5.1!

For manifold for direct pipe connection, see below!

Hole pattern of the manifold (top view)

Ports
DIN ISO 228/1 (BSPP):
F = G 1/2
M, S, Z = G 1/4

M6, 11 deep

O-ring 12.37x2.62
NBR 90 Sh

Type LHDV 33 P-15

For instructions to the adjustment of the throttling screw, see note in sect. 5.1!

For manifold for direct pipe connection, see below!

Hole pattern of the manifold (top view)

Ports
DIN ISO 228/1 (BSPP):
F = G 1/2
R = G 3/8
M, S, Z = G 1/4

M6, 11 deep

O-ring 12.37x2.62
NBR 90 Sh

Connection block No. 7770 024
intended for direct pipe connection at port V (consumer side).
Tapped port G 1/2
DIN ISO 228/1 (BSPP),
Suitable for type LHDV 33 P-11, LHDV 33 P-15
To be ordered individually, when required.

1) Port Z is not plugged ex-works.
If it is not required, it may be blocked with a tapped plug e.g. DIN 908-G 1/4 A-St plus sealing ring DIN 7603-Cu-14x18x1.5.

2) Attention:
The hexagon housing must be fixed while tightening the pipe fitting!
1) Port Z is not plugged ex-works. If it is not required, it may be blocked with a tapped plug e.g. DIN 908-G 1/4 A-St plus sealing ring 14x18x1.5 DIN 7603-Cu

2) Attention: The hexagon housing must be fixed while tightening the pipe fitting!

3) Fitting for shock valve and corresponding hole are not apparent with type LHDV 33 H-11

For instructions to the adjustment of the throttling screw, see note in sect. 5.1!

Type LHDV 33 H-11
LHDV 33 H-15

<table>
<thead>
<tr>
<th>Ports</th>
<th>Thread</th>
</tr>
</thead>
<tbody>
<tr>
<td>V with version ..H</td>
<td>M22x1.5 DIN 13</td>
</tr>
<tr>
<td>with version H 1/2</td>
<td>G 1/2 A DIN ISO 228/1 (BSPP)</td>
</tr>
<tr>
<td>F</td>
<td>G 1/2 DIN ISO 228/1 (BSPP)</td>
</tr>
<tr>
<td>R</td>
<td>G 3/8 DIN ISO 228/1 (BSPP)</td>
</tr>
<tr>
<td>S, Z</td>
<td>G 1/4 DIN ISO 228/1 (BSPP)</td>
</tr>
<tr>
<td>M</td>
<td>M8x1 DIN 13 (Type LHDV 33 H-15)</td>
</tr>
<tr>
<td>M</td>
<td>G 1/4 DIN ISO 228/1 (BSPP)</td>
</tr>
</tbody>
</table>

Type LHDV 33-21
LHDV 33-21L
LHDV 33-21W
LHDV 33-21WD
LHDV 33-21WL

Restrictor check valve, type BC 1-40 E with type LHDV 33-21WD

Port Z is not plugged ex-works.
If it is not required, it may be blocked with a tapped plug e.g. DIN 908-G 1/4 A-St plus sealing ring 14x18x1.5 DIN 7603-Cu

Attention:
The hexagon housing must be fixed while tightening the pipe fitting!

Fitting for shock valve and corresponding hole are not apparent with type LHDV 33 H-11
1) **Attention**

The hexagon housing must be fixed while tightening the pipe fitting!

Type LHDV 33-25
- LHDV 33-25L
- LHDV 33-25W
- LHDV 33-25WL

For instructions to the adjustment of the throttling screw, see note in sect. 5.1!

Ports DIN ISO 228/1 (BSPP):
- F1, F2, V1, V2 = G 1/2
- L, X = G 1/4

Ports conforming DIN ISO 228/1 (BSPP):
- F1, F2, V1, V2 = G 1/2
- T = G 3/4
- L, X = G 1/4

Restrictor check valve, type BC 1-40 E
with type LHDV 33-25WD(N) - ...
5. Appendix

5.1 Dampening throttles

The dampening behavior may be extensively adapted within the adjusting range. This can be performed on site. It is recommended to include the following note and the schematic drawing into the operating manual or the operating instructions of the equipment.

The lock nut a/f 10 (Seal-Lock nut) needs to be loosened sufficiently prior to adjusting the throttling screw, otherwise the vulcanized sealing gasket of the thread will be damaged!

Throttle screw
(grub screw ISO 4026 M64h x 30-8.8-A2K)

Caution: Do not unscrew the throttle screw above the maximum of 17 mm (as is illustrated in the adjacent figure)! Due to construction restrictions it cannot be anchored on the inside of the equipment.

5.2 Release pressure \(p_n \) on the inflow side

The required pressure at the pump \(p_n \), to transfer the load against the load holding valve located down stream (direction \(V \rightarrow F \)) can’t be exactly predicted. It depends on the following parameter: Piston cross section area ratio \(A_n : A_{out} \) of the hydraulic cylinder, the internal operation area ratio of the load holding valve (release ratio acc. to sect. 3), the existing load pressure and the flow resistance \(\Delta p_{V \rightarrow F} \) of all additional throttling locations downstream back to the tank e.g. reflow pipe, directional valves (in the example \(A \rightarrow R \)).

The setting of an additional shock valve installed in the feeding pipe of the consumer has to be adjusted high enough, over the setting of the main pressure relief valve, that it can overcome the highest release pressure (no load situation).

Rough guiding figures suitable for a max. set pressure of 370 or 250 bar and max. flow dep. on valve coding, see sect. 2:

\[p_n \text{ max. } = 130...170 \text{ bar at } 370 \text{ bar set pressure} \]

\[p_n \text{ max. } = 100...140 \text{ bar at } 250 \text{ bar set pressure} \]

with a piston cross section area ratio \(A_n : A_{out} \) of about 2...0.5 for the hydraulic cylinder. The return flow resistance can increase these standard guiding figures by about \((1.1...3.5) \times \Delta p_{V \rightarrow F}\) depending on the release ratio.

A readjustment of the pressure limiting valve is possible on site when required.

Important note:

The additional leakage port of the double valves acc. to sect. 2, page 3 (e.g. LHDV 33-21L -...) reduces the influence of the return flow resistance back to the tank. An additional advantage is in the possibility that this leakage pipe, in the case of an emergency, can be shut-off with a hand pump.